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We give a thorough description of the shape of rotating axisymmetric stable black-hole (apparent)

horizons applicable in dynamical or stationary regimes. It is found that rotation manifests in the widening

of their central regions (rotational thickening), limits their global shapes to the extent that stable holes of a

given area A and angular momentum J ! 0 form a precompact family (rotational stabilization) and

enforces their whole geometry to be close to the extreme-Kerr horizon geometry at almost maximal

rotational speed (enforced shaping). The results, which are based on the stability inequality, depend only

on A and J. In particular they are entirely independent of the surrounding geometry of the space-time and

of the presence of matter satisfying the strong energy condition. A complete set of relations between A, J,
the length L of the meridians and the length R of the greatest axisymmetric circle, is given. We also

provide concrete estimations for the distance between the geometry of horizons and that of the extreme

Kerr, in terms only of A and J. Besides its own interest, the work has applications to the Hoop conjecture

as formulated by Gibbons in terms of the Birkhoff invariant, to the Bekenstein-Hod entropy bounds and to

the study of the compactness of classes of stationary black-hole space-times.
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I. INTRODUCTION

Apparent horizons have been used for decades as the
localization of the event horizon along the time evolution
[1]. However, the notion of stability was only recently
introduced and, in addition, it was proved that apparent
horizons are stable [2,3]. This notion, which at first seems
too simple, has placed apparent horizons into a more useful
playground. Based on these new developments, we give
here a thorough description of the shape of rotating (J ! 0)
stable horizons of axisymmetric space-times, only in terms
of their area A and their angular momentum J.

The remarkable fact that there are strict constraints on
the geometry of axisymmetric apparent horizons arising
merely from A and J is unique to 3þ 1 dimensions
and differs drastically from what occurs even in 4þ 1
dimensions, where extraordinary new phenomena seem
to emerge [4]. In this paper we explore the shape of such
horizons to gain insight about the shape of realistic black
holes in our Universe.

Celestial bodies tend to be spherical due to gravity. It is
expected that whenever enough and slowly rotating mass is
gathered close enough together, the resultant gravity will pull
equally in all directions and a spherical shape will result.
Thus, stars and planets, on the whole, are close to spherical.
But when fast rotating matter condensates, the deviations
from sphericity of the final shape could be quite common and
not necessarily negligible or small. The most noticeable
of these deformations is a flattening perpendicular to the

rotation axis of the spinning objects, resulting in configura-
tions that become ever more oblate for increasingly rapid
rotation. The largest known rotational flattening of a star in
our Galaxy is present in the star Achernar (the ninth-
brightest star in the night), which is spinning so fast that
the ratio of the equatorial radius Re to the polar radius Rp

deviates drastically from one, reaching the outstanding
Re=Rp # 1:56 ([5]). This implies a flattening f :¼
1! Rp=Re # 0:35. The significance of the deviation is
evident when comparing it with the flattening of the Sun
f # 5% 10!5, the Earth f # 3:35% 10!3 or Saturn
f # 9:79% 10!2. Yet, in all these cases, even in the ex-
treme Achernar, flattening is largely a classical phenomenon
associated to rotation and with general relativity playing no
role. For Einstein’s theory to be significant, the rotational
period T of the object must be of the order of 4!GM=c3, or
(in geometrized units) the dimensionless quotient

! :¼ 1

2"M
;

where" is the angular velocity, must be of the order of the
unity. Achernar, in particular, has ! # 1010 and even higher
ratios hold for the other astrophysical objects mentioned
above. In Newtonian mechanics, and for uniformly rotating
bodies of constant density, the quotient ! is closely related
to the quotient

~! ¼ A

8!jJj ; (1)

which depends only on the mass and the geometry of the
physical system. Indeed, for spheres we have ~! ¼ 5
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for cylinders with radius equal to their height we have ~! ¼
!. The quotient ~! is also meaningful for axisymmetric black
holes and will be used fundamentally all through the paper.

In comparison to the examples before where ! is exceed-
ingly large, the situation dramatically changes when con-
sidering millisecond pulsars. For instance a pulsar with a
rotational period of one millisecond and of two solar
masses, would have ! # 8:3. To date, the highest rotating
pulsar known is PSR J1748-2446ad, with a period 1.4
milliseconds, and a mass between one or two solar masses.
Even a conservative mass of one and a half solar masses
would give ! # 15:5. Two questions thus naturally arise:
Are the shapes of millisecond pulsars affected by their high
rotations? Is general relativity playing any role?

Let us move now to see what occurs to the Kerr black-
hole horizons, which are by nature general relativistic.
From now on it will be conceptually advantageous to think
of horizons as the surfaces of ‘‘abstracted’’ celestial bodies
possessing a massM, an area A, an angular momentum jJj,
and a rotational velocity", just like most ordinary celestial
bodies would have.1 The metrics of the Kerr horizons carry
the expressions

h ¼ #d"2 þ ð2MrÞ2#!1sin 2"d’2; (2)

where

# ¼ r2 þ jJj2M!2cos 2"; and

r ¼ Mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 ! jJj2M!2

q
:

The three most basic measures of ‘‘size’’ of an
axisymmetric black hole are its area A, the length R of
its great circle, that is, the length of the greatest axisym-
metric orbit, and the length L of the meridian, which is the
distance between the poles, as is described in Fig. 1. For the
Kerr black holes, these parameters are given by

A ¼ 8!Mr; R ¼ 4!M; and

L ¼
Z !

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ jJj2M!2cos 2"

q
d":

If we fix the mass but increase the rotation from jJj ¼ 0 all
the way until the greatest angular momentum a horizon can
hold at jJj ¼ M, then the length R of the great circle
remains constant but the length L of the meridian decreases
monotonically.2 The flattening ~f :¼ 1! 2L=R, in particu-
lar, passes from ~f ¼ 0 when jJj ¼ 0 to a maximum
~f # 0:36 when jJj ¼ M (note that the flattening coeffi-
cient ~f is not the same as f). To compare, the Achernar star
has ~f ¼ 0:17. As expected then, the more the black holes
rotate, the more oblate they become. Observe that, as
jJj varies from jJj ¼ 0 to jJj ¼ M, the quantities ! ¼
1=2"M and ~! ¼ A=8!jJj for the Kerr-horizons, vary

from ! ¼ ~! ¼ 1 all the way down to ! ¼ ~! ¼ 1. In
particular for the extreme horizon, which is the most oblate
one, with ~f # 0:36, we have 1=2"M ¼ A=8!jJj ¼ 1.
Then, although the Kerr horizons are by nature general
relativistic, their rotational flattening is markedly manifest
only when 1=2"M # A=8!jJj # 1.
It is worth mentioning that none of the rotating Kerr

horizons (i.e., when jJj ! 0) are exactly metrical spheroids
and their oblate shapes are not so simple to visualize. To
get a better graphical understanding one could isometri-
cally embed them into Euclidean space. This can be done
for small values of jJj, obtaining then nice oblate spheroi-
dal shapes [6], but there is a maximum value of jJj (less
than M) after which isometric embeddings into Euclidean
space are no more available.3 A detailed discussion of
these issues is presented in [6] including an analysis of
isometric embeddings of horizons into the hyperbolic
space. For reference, a convenient way to depict axisym-
metric holes is the following. For every rotational orbit C
let aðCÞ be the area of the disc enclosed by C and contain-
ing the north pole N, and let rðCÞ be the length of C. Then
on a ðr; aÞ grid, graph rðaÞ, shift it upwards by A=2 and flip

Meridian of length L

Great circle of length R

Total area A

Orbit C of length r(C) 

Length l(C) Area a(C)

N

S

FIG. 1. Representation of a distorted (dynamical or stationary)
axisymmetric horizon and the main geometric parameters.

1The abstraction is so useful indeed that, at times, it can be a
bit perplexing.

2As a direct implicit computation of its derivative shows.

3To roughly see that such a maximum must exist, observe that
when jJj ¼ M, namely for the fastest rotating black hole, we
have A ¼ 16!M2 and R ¼ 4!M; in particular, the areas of the
discs DN and DS enclosed by the great circle are both equal to
8!M2. If an isometric embedding exists then the great circle
would map into a circle C in Euclidean space and of radius 2M,
but then the discs DN , DS would both have to map into the flat
disc filling C, because this is the only disc with boundary C
having area 4!M2. All this is a manifestation of the fact that for
jJj high, the Gaussian curvature of the horizon becomes rather
negative near the two poles.
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it around the frg axis (to have the north up). The result is
the representation of the black hole. In Fig. 2 we show
the corresponding graphs of the Schwarzschild and
extreme-Kerr holes of the same mass (equal to 1=2). For
Schwarzschild in particular the graph is a semicircle. The
flattening due to rotation is then evident. We will use this
type of representation again in Fig. 3.

We will investigate flattening and other effects that
rotation causes over the shape of black holes, and we will
do so, as we said, only in terms of A and J. The reason why
it is useful in axisymmetry to control the geometry of
horizons in terms of A and J can only be exemplified as
follows. Suppose that a single compact body (part of an
axisymmetric system) evolves in such a way that at a
certain time slice ft0g it is surrounded by trapped surfaces
signaling the beginning of gravitational collapse and the
emergence of a black hole. At the slice ft0g and at any other

subsequent slice ftg, the apparent horizon Ht is located at
the boundary of the trapped region [1,3]. As the material
body sinks deep inside the hole the outside region of the
apparent horizons stays empty and their angular momen-
tum is conserved, i.e., JðHtÞ ¼ J. Moreover, at every time
slice ftg the universal inequality 8!jJj ( AðHtÞ holds
[7–9] and we also expect the validity of the Penrose
inequality AðHtÞ ( 8!M2, where M is the ADM mass
which is also conserved. Thus, in this scenario we have
JðHtÞ ¼ J, 8!jJj ( AðHtÞ, and we expect to have AðHtÞ (
8!M2. Hence, every quantity or property of stable hori-
zons that is proved to be controlled only by the area A and
the angular momentum J, will be also controlled on the
apparent horizons in the process of gravitational collapse.
One of the first attempts to give information about the

shape of black holes goes back to the Hoop conjecture,
formulated by Thorne [10] in 1972. It reads, ‘‘Horizons
form when and only when a mass m gets compacted onto a
region whose circumference in every direction is less than
or equal to 4!M.’’ According to this conjecture, the
circumference around the region must be bounded in every
direction, and hence a thin but long body of given
mass would not necessarily evolve to form a horizon.
Unfortunately, the impreciseness of Thorne’s statement
had made this heuristic conjecture difficult to state,
approach and ultimately, to prove. In this paper we assume
the presence of a black hole and investigate its geometric
properties. In this sense necessary conditions for the for-
mation of black holes are presented. Particularly, we will
validate the picture of the (reciprocal) Hoop conjecture as
formulated by Gibbons [11]. This is done in Proposition 1.
Well defined, intrinsic and useful measures of shape are

important in the study of the geometry of black hole hori-
zons. To define them one possibility is to use a background,
well known configuration, to compare with. For rotating
black holes, the extreme Kerr black hole plays a key role
and will be used, therefore, as the reference metric. In this
regard in Theorem 4 we are able to estimate the ‘‘distance’’
from a given horizon to the extreme Kerr horizon (of the
same J) only in terms of A and J. One can also red consider
global quantities like R, L or A or one can construct
dimension-less coefficients, like the flatness coefficient
~f ¼ 1! 2L=R mentioned before, that give an intrinsic
notion of deformation. Gibbons [11,12] for instance, studies
the length of the shortest nontrivial closed geodesic ‘ and
the Birkhoff’s invariant #. To demonstrate their usefulness
he proves that if the surface admits an antipodal isometry
and that the Penrose inequality holds, then ‘ (

ffiffiffiffiffiffiffi
!A

p
and

‘ ( 4!M. He conjectures that these inequalities hold in the
general case, without antipodal symmetry. In Proposition 1
we come very close to proving it as we will get ‘ ( # (
2

ffiffiffiffiffiffiffi
!A

p
. We present many geometric relations of this kind

between R, L, A and J which are resumed and discussed in
Theorems 1 and 2 and in Proposition 1.
Outermost marginally trapped surfaces (MOTS), of

which apparent horizons are an instance, are those for

r

Schwarzschild

π2

Extreme Kerr
a

r

N

S

N

S

π4π 2

S

N

FIG. 2. Left: The visualization of the Schwarzschild and
extreme Kerr black holes in the (r, a) grid. Right: The represen-
tation of the geometry in Fig. 1.

(a) (b)

(c)

FIG. 3. When there is a significant rotation jJj in comparison
to the area A, very prolate or very oblate stable horizons as in (a)
or (b), respectively, are forbidden. Instead a shape like (c) would
be allowed. The shape of horizons is completely controlled by

$ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA=8!jJjÞ2 ! 1

p
.
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which the outgoing null expansion is zero. Stable MOTS
are those which can be deformed outwards while keeping
the outgoing null expansion non-negative (to first order)
[3]. All the results in this paper are stated for stable MOTS.
To have a flexible terminology we will refer them from
now on simply as stable ‘‘horizons,’’ ‘‘holes,’’ or ‘‘black
holes.’’

At first sight the stability property seems to be too
simple to have any relevant consequence. But indeed and
contrary to this perception the stability is crucial and plays
a central role in many features of black holes. It will be also
the main tool to be used here. For this reason let us give
now a glimpse of the main elements of stability in the
axisymmetric setup. For an axisymmetric and stable black
hole H in a space-time with matter satisfying the strong
energy condition, the stability implies the inequality

Z
H
ðjr%j2 þ &%2ÞdA )

Z
H

jSj2
2

%2dA (3)

for any axisymmetric function % on H [9]. Here & is the
Gaussian curvature ofH with its induced two-metric h and
S is the (intrinsic) Hajicèk one-form, which is defined by
SðXÞ ¼ !hk;DXli=2, where l and k are outgoing and
ingoing future null vectors, respectively, normalized to
have hk; li ¼ !2 but otherwise arbitrary (D is the covariant
derivative of the space-time). In terms of S, the Komar
angular momentum of H is just

JðHÞ ¼ 1

8!

Z
H
Sð'ÞdA; (4)

where ' is the rotational Killing field. One can use
axisymmetry to further simplify (3). We explain how this
is done in what follows. Over any axisymmetric sphere
there are unique coordinates ð"; ’Þ, called areal coordi-
nates, on which the metric takes the form

h ¼
"
A

4!

#
2
e!(ð"Þd"2 þ e(ð"Þsin 2"d’2 (5)

and where @’ ¼ ' is, manifestly, the rotational Killing
field over H. Regularity at the poles implies (ð0Þ ¼
(ð!Þ ¼ ln ðA=4!Þ. The area element is dA ¼ A

4! %
sin "d"d’ and is thus a multiple of the area element
of the unit two-sphere. Then define a rotational potential
! ¼ !ð"Þ by imposing

d!

d"
¼ A

2!
sin "Sð@’Þ; !ð0Þ ¼ !!ð!Þ:

A direct computation using (4) then gives J ¼ ð!ð!Þ !
!ð0ÞÞ=8 ¼ !ð!Þ=4. In terms of the coordinates ð"; ’Þ and
!, the inequality (3) results in

Z
H
ðjr%j2 þ &%2Þ sin "d"d’

)
"
2!

A

#
2 Z

H

jr!j2
) sin"

%2d"d’; (6)

which is valid for any axisymmetric function %. Note that
the integrands are independent of ’ and that therefore the
integral in ’ can be factored out to a 2!. The inequality is
set out of the two arguments ! and (, and for this reason
ð!;(Þ will be our data. Many times however we will use

) :¼ e(sin 2"

instead of (, and use the data ð!;)Þ instead of ð!;(Þ.
Of particular interest is ð!E;(EÞ, the data of the extreme
Kerr horizon with angular momentum J, which plays the
role of a background data and has the expression

(E ¼ ln
4jJj

1þ cos 2"
; !E ¼ ! 8J cos "

1þ cos 2"
:

All the results in this paper are based on different uses of
the fundamental inequality (6). The difficulty in each case
resides in how to chose the trial functions % to get the
desired information over ð!;(Þ. Let us illustrate this point
with an example that will be important to us many times
later. Choosing % ¼ e!(=2 in (6) one obtains [7]

A ) 4!eðM!8Þ=8; (7)

where M ¼ Mð!;(Þ is the functional

Mð!;(Þ ¼
Z !

0

"
(02 þ 4(þ!02

)2

#
sin "d": (8)

The crucial fact here is that, regardless of the particular
functions ð!;(Þ (but with !ð!Þ ¼ !!ð0Þ ¼ 8J) one
has [13]

eðM!8Þ=8 ) 2jJj: (9)

Hence, as shown in [7], the universal inequality A ) 8!jJj
follows by choosing % ¼ e!(=2. Equations (7)–(9) will be
of great use later. Other choices of % give other kind of
information as will be shown during the proofs inside the
main text.
We give now a qualitative overview of our main results.

They are discussed in full technical detail in the Sec. I A.
The main results can be summarized in the following three
effects due to rotation: (A) rotational thickening, (B) rota-
tional stabilization, and (C) enforced shaping.
(A) Rotational thickening. In line with the discussion

above, the most noticeable effect of rotation is a
‘‘widening’’ or ‘‘thickening’’ of the bulk of the
horizons. The more transparent quantitative esti-
mate supporting this phenomenon is given in
Theorems 1 and 2, and states that the length R of
the great circle is subject to the lower bound

16!jJj2
A

( 2jJj
$þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
$2 þ 4

p (
"
R

2!

#
2
; (10)

where
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$ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi"
A

8!jJj

#
2
! 1

s
: (11)

The meaning of (10) is more evident in black
holes with a fixed (nonzero) value of the angular
momentum per unit of area, jJj=A. Written as

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64!3jJj=A

p
Þ

ffiffiffiffiffiffi
jJj

p
( R, the formula (10) says that

the length of the greatest axisymmetric orbit is at
least as large as a constant (which depends on the
ratio of angular momentum to area) times the
square root of the angular momentum. In simple
terms, rotation imposes a minimum (nonzero) value
for the length of the greatest circle.
The estimate (10) is somehow elegant but doesn’t
say whether the greatest circle lies in the ‘‘middle
region’’ of the horizon or ‘‘near the poles,’’ nor does
it say anything about the size of other axisymmetric
circles. Information about the size of axisymmetric
circles in the ‘‘middle regions’’ can be easily ob-
tained from Theorem 3. To understand this consider
the set of axisymmetric circles C at a distance from
the north and south poles greater than or equal to
one third of the distance between the poles, which is
greater than or equal to L=3. Roughly speaking, the
set of such circles ‘‘is the central third’’ of the
horizon. Then, the length rðCÞ of any such circle

is greater than Dð$Þ
ffiffiffiffiffiffi
jJj

p
for a certain function

Dð$Þ> 0 (which is a function of the ratio jJj=A).
This fact, which we prove after the statement of
Theorem 3, generalizes what we obtained for the
great circle and gives further support to the idea of
‘‘thickening by rotation’’.
We also show that provided there is an area
bound, the length of the great circle, and therefore
the length of any axisymmmetric circle, cannot be
arbitrarily large. More precisely we prove also in
Theorems 1 and 2 the upper bound

"
R

2!

#
2
( 4jJj$þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
$2 þ 4

p

2
( A

!
: (12)

There are other related manifestations of the
influence of rotation in the shape of horizons which
are worth mentioning at this point. For instance we
prove in Theorem 2 the bounds

Dð$Þ ( R

L
( 2

ffiffiffi
2

p
!: (13)

These bounds show that stable rotating horizons of a
given area A and angular momentum J ! 0, cannot
be arbitrarily oblate nor arbitrarily prolate. This
phenomenon is depicted in Fig. 3. More relations
between R, L, A, and J are given in Theorem 2.

(B) Rotational stabilization. Secondly, we found that
rotation stabilizes the shape of stable horizons to

such an extent that rotating holes of a given area
and angular momentum have their entire shapes
controlled (and not just their global measures like
R or L). This is manifest from the pointwise bounds

j(ð"Þ ! (Eð"Þj ( Fð$Þ;
j!ð"Þ !!Eð"Þj

4jJj ( Fð$Þ
(14)

for all " 2 ½0;!+ and for a certain finite function
Fð$Þ, proved in Theorem 4, and which imply the
pointwise bounds of the coefficients of the metric h
(5) Still, we are able to prove in Proposition 6 the
even stronger result that the family of the metrics
and potentials of axisymmetric stable horizons of a
given area A and angular momentum J ! 0 is
precompact (in C0). These quantitative facts are
specially relevant when applied to apparent hori-
zons in gravitational collapse (as discussed before)
revealing a remarkable and unexpected rigidity all
along evolution.

(C) Enforced shaping. In third place we found that at
very high rotations all the geometry of the horizon
tends to that of the extreme Kerr horizon regardless
of the presence and type of matter (satisfying the
strong energy condition). This claim is also proved
in Theorem 4.

All these results and their applications are discussed in
full length in the next sections.

A. Precise statements and further discussions

In the sequel we continue using $ as

$ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi"
A

8!jJj

#
2
! 1

s
:

Our first theorem displays appropriate upper and lower
bounds for the length R of the greatest circle. In particular,
as commented in ðAÞ above, the lower bound for R in (15)
shows that rotating black holes with a given A and J ! 0,
cannot be arbitrarily ‘‘thin,’’ and the upper bound shows
that they cannot be arbitrarily ‘‘thick.’’
Theorem 1. Let H be a stable axisymmetric horizon of

area A and angular momentum J ! 0. Then the length R of
the great circle satisfies

4jJj 2

$þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
$2 þ 4

p (
"
R

2!

#
2
( 4jJj$þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
$2 þ 4

p

2
: (15)

These two bounds are sharp, namely they coincide, when

$ ¼ 0, in R=2! ¼ 2
ffiffiffiffiffiffi
jJj

p
which is the value for the extreme

Kerr horizon. This is not a coincidence as we will see
below that the whole geometry (for a sequence of horizons)
converges to that of the extreme Kerr as $ ! 0.
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Our second theorem displays fundamental relations be-
tween the main global geometric parameters A, J, L and R
of axisymmetric stable horizons.

Theorem 2. Let H be a stable axisymmetric horizon of
area A and angular momentum J ! 0. Then the length R of
great circle and the length L of the meridian obey the
relations

ð4!Þ2jJjffiffiffiffiffiffiffiffiffiffi
4!A

p ( R (
ffiffiffiffiffiffiffiffiffiffi
4!A

p
; (16)

2
ffiffiffiffiffiffi
jJj

p
(

ffiffiffiffiffiffiffi
A

2!

s
( L; (17)

A

L2 (
R

L
( 2

ffiffiffi
2

p
!: (18)

Moreover, there is Dð$Þ> 0, such that

Dð$Þ ( A

L2 : (19)

The bounds (16) are deduced from (15) but are nonsharp at
$ ¼ 0. The bound R=2L (

ffiffiffi
2

p
! expresses that black

holes, regardless of the values of A and J, cannot be
arbitrarily oblate. Note that we would expect the extreme
Kerr horizon to be the most flattened black hole; namely,
we would expect the ratio R=2L to be bounded above
by the value of the extreme Kerr horizon, i.e., R=2L (
R0=2L0 , 0:52!. Although nonsharp, the estimation
R=2L (

ffiffiffi
2

p
! is reasonably good. On the other hand the

bound Dð$Þ=2 ( R=2L shows that black holes of given A
and J cannot be arbitrarily prolate. An expression for Dð$Þ
can be given explicitly, but we will not present it in this
paper as it is not particularly useful. The existence of Dð$Þ
will be shown by contradiction. An interesting question is
whether one could use the stability inequality (6), with a
suitably chosen probe function %, to obtain a sharp upper
bound on R=2L.

Our third theorem displays fundamental relations among
the local measures a, l, r of stable rotating holes. Given an
axisymmetric orbitC, the magnitude rðCÞ is its length, lðCÞ
is the distance to the north pole N and aðCÞ is the area of
the region enclosed by C and containing the north pole. In
the statement below, the parameters a, l and r are defined
from the north pole N but of course the same relations hold
when they are defined from the south pole S.

Theorem 3. Let H be a stable axisymmetric horizon. Let
D ¼ A=L2. Then the following relations hold

1

2!
a ( l2 ( 32

D
a; (20)

l ( 4

D
r; as long as l ( L=2; (21)

r2 ( ð4!e4Þa; as long as a ( A=4: (22)

We can use then the inequality D ) Dð$Þ from (19) of
Theorem 2 and (20)–(22) to obtain

a ( c1l
2 ( c2

D2ð$Þ r
2 ( c3

D2ð$Þa (23)

as long as a=A ( 1=128 and for certain constants
c1, c2, c3.
The theorem can be used to obtain varied information.

For instance one can extract concrete bounds for the metric
coefficient e( around the poles as follows. First note that in
(22), the condition að"Þ=A ( 1=4 is equivalent to " (
!=3. This is because að"Þ=A ¼ ð1! cos"Þ=2 and there-
fore a=A ( 1=4 is equivalent to cos" ) 1=2. Thus, as
r ¼ 2!e(=2 sin " we get from (22) and for " ( !=3

4!2e(sin 2" ( 2!e4Að1! cos "Þ:

But when " ( !=3 we have ð1! cos "Þ ( ð1! cos"Þ%
ð1þ cos"Þ ¼ sin 2" and therefore e(ð"Þ ( Ae4=2! for
all 0 ( " ( !=3. By symmetry the same holds for " 2
½2!=3;!+.
Another application that we commented in the

Introduction concerns the length of the axisymmetric
circles whose distance to the north and the south poles is
greater than or equal to one third the distance between the
poles, which is greater than or equal to L=3. For any such

circle, we claimed that rðCÞ ) Dð$Þ
ffiffiffiffiffiffi
jJj

p
, a relation which

gave further support to the idea of ‘‘thickening by rota-
tion.’’ With the help of Theorem 3, this is proved as
follows. Assume, without loss of generality, that the dis-
tance from C to the north pole is less or equal than the
distance from C to the south pole (i.e., in the notation of
Theorem 3 assume l ( L=2) and then use that l ) L=3 in
combination with (21) and (17).
More general than Theorem 3, our fourth theorem

shows, as discussed in (B), that the two-metric of the
horizon (and therefore its whole geometry) and the rota-
tional potential are completely controlled in C0 by A and
J ! 0. It also shows that stable holes with A=8!jJj close to
one must be close to the extreme Kerr horizon.
Theorem 4. There is Fð$Þ<1 such that for any

stable axisymmetric horizon with angular momentum
J ! 0 we have

j(ð"Þ ! (Eð"Þj ( Fð$Þ and
j!ð"Þ !!Eð"Þj

4jJj ( Fð$Þ

(24)

for any " 2 ½0;!+. Moreover, for any angle 0< "1 < !=2
and *> 0 there is $$ð"1; *Þ such that for any stable horizon
with $< $$ we have

max
"2½"1;!!"1+

fj(ð"Þ ! (Eð"Þjg ( * and

max
"2½"1;!!"1+

$j!ð"Þ !!Eð"Þj
4jJj

%
( *:

(25)

MARIA E. GABACH-CLEMENT AND MARTIN REIRIS PHYSICAL REVIEW D 88, 044031 (2013)

044031-6



The proof of Theorem 4 makes use of the following
Theorem 5 which is interesting in itself. Theorem 5 is
stated in the variables ð!;)Þ instead of ð!;(Þ and it will
be also convenient to think of the datum ð!;)Þ as a path in
the hyperbolic plane H2 ¼ fð!;)Þ;)> 0g provided with
the hyperbolic distance

dH2ðð!1;)1Þ; ð!2;)2ÞÞ

¼ Arch
&
1þ ð!1 !!2Þ2 þ ð)1 ! )2Þ2

2)1)2

'
: (26)

The reason for this is that the functional M, on which
Theorem 5 is based, is up to a boundary term the energy of
the paths ð!;)Þ in the hyperbolic plane and such energy
functional is easily analyzable.

Theorem 5. LetH be a stable axisymmetric horizon with
J ! 0. Then

(i) The data ð!;)Þ ¼ ð!ð"Þ;)ð"ÞÞ satisfies
ð)2 þ!2 ! 16jJj2Þ2

)2 ( 16jJj2$2: (27)

(ii) For any two angles 0< "1 ( "2 < ! denote
q1 ¼ ð!1;)1Þ ¼ ð!ð"1Þ;)ð"1ÞÞ, q2 ¼ ð!2;)2Þ ¼
ð!ð"1Þ;)ð"2ÞÞ, and d12 ¼ dH2ðq1; q2Þ. Then

((((((((d12 ! 2 ln
&
tan"2=2

tan"1=2

'((((((((
2

( 12
"
ln
&
tan "2=2

tan "1=2

'#
Archð1þ $2Þ: (28)

Inequality (27) says that the graph of the curve ð!;)Þð"Þ
in the hyperbolic plane H2 lies between the arcs of two
circles of centers ð0; 2jJj$Þ and ð0;!2jJj$Þ, respectively,
and both of radius 2jJj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ $2

p
(see Fig. 4). To see this,

simply observe that (27) implies

ð)! 2jJj$Þ2 þ!2 ( 4jJj2ð4þ $2Þ and

4jJj2ð4þ $2Þ ( ð)þ 2jJj$Þ2 þ!2:

It is apparent from this that as A # 8!jJj (with jJj fixed),
that is, as $ # 0 and the centers of the circles approach each

other, the graph of ð!;)Þð"Þ gets closer and closer to the
unit semicircle which is the graph of extreme Kerr with
angular momentum J. However, this does not imply that
ð!;)Þð"Þ, as a parametrized curve, approaches ð!E;)EÞ%
ð"Þ as is claimed in Theorem 4. It is interesting to see
however what occurs if one uses items (i) and (ii) in
Theorem 5 when $ ¼ 0. As we will see this does not
imply exactly that ð!;)Þ is the data of the extreme-Kerr
horizon unless we impose that ð!ð!=2Þ;)ð!=2ÞÞ ¼ ð0; 1Þ.
Assume for simplicity of the calculation that 4jJj ¼ 1 (and
therefore A ¼ 2!). From (27) one gets

)2 þ!2 ¼ 1: (29)

Denote by $" an angle for which ! ¼ 0. Because of (29),
we also have at this angle ) ¼ 1. Using (28) with " ¼ "1
and $" ¼ "2 we obtain

2 ln
tan "1

2

tan "0
2

¼ Arch
&
1þ!2 þ ð)! 1Þ2

2)

'
¼ Arch

1

)
;

where to obtain the second inequality we have used (29).
One can then solve for ) and once done that use (29) to
solve for !. The result is

) ¼ 2ðtan 2 "
2Þ=ðtan 2 $"

2Þ
1þ ðtan 4 "

2Þ=ðtan 4 $"
2Þ
;

! ¼ !1þ ðtan 4 "
2Þ=ðtan 4 $"

2Þ
1þ ðtan 4 "

2Þ=ðtan 4 $"
2Þ

:

(30)

This reduces to the extreme Kerr horizon geometry only
when $" ¼ !=2.

B. Applications

1. The Hoop conjecture and entropy bounds

The following proposition, which is commented on
below, makes contact with Thorne’s Hoop conjecture.
Proposition 1. Let S be a stable, axisymmetric,

outermost minimal surface on a maximal axisymmetric
and asymptotically flat initial data, possibly with matter
satisfying the strong energy condition. Then, the length L
of the meridian of S and the length R of the great circle
satisfy

2!jJj
M

( R ( 8!M; (31)

jJj2þ
"
A

8!

#
2
( L2M2; (32)

where M is the ADM mass.
Proof. To obtain (31) use the Riemannian Penrose

inequality [14],

A ( 16!M2; (33)

in Eq. (16).
To obtain (32) first use A ( 2!L2 to get A2 ( 2!AL2

and then use (33) on the rhs to arrive at

ω0

η

The graph (ω,η)

(ω,η)The graph 
of a horizon.

of extreme Kerr.

|J|4|J|4−

δ2|J|

δ−2|J|

FIG. 4. The graph of the curve ð!;)Þ in the hyperbolic plane
lies between the arcs of two circles intersecting at the points
ð-4jJj; 0Þ.
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"
A2

8!

#
2
( M2L2

2
: (34)

Then, from (17) we have jJj ( L2=4 and therefore jJj2 (
jJjL2=4. Using jJj ( 2M2 [which comes from combining
jJj ( A=8! and then (33)] on the rhs we arrive at

jJj2 ( L2M2

2
: (35)

Summing (34) and (35), we deduce (32). j
In [11], Gibbons proposed that the Birkhoff invariant #

(see [11] for a definition of #) of an apparent horizon must
verify # ( 4!M. The aim of Gibbons’s proposal was to
materialize in a concrete statement Thorne’s heuristic
Hoop conjecture. Quite remarkably we come very close
to proving it at least for outermost minimal spheres.
Indeed, for an axisymmetric sphere we have always # (
R and therefore from (31) we get # ( 8!M. Whether 8!
instead of Gibbons’s 4! is the right coefficient forM is not
known to us. If one expects the Penrose inequality to hold
also for apparent horizons, then the argument before would
work the same and one would obtain R ( 8!M as well.

On the other hand the Eq. (32) has a peculiar motivation.
In [15], Bekenstein suggested an upper bound for the
entropy of black holes in terms of their ‘‘mass’’ M and
‘‘radius’’R that should hold to guarantee the validity of the
generalized second law of thermodynamics. Bekenstein’s
suggestion was later extended by Hod [16] to include
angular momentum. According to them, the entropy bound
should read

jJj2 þ
"
A

8!

#
2
( R2M2: (36)

Although the notion of ‘‘radius’’ is left ambiguously
defined, Eq. (32) shows that (36) is exactly satisfied if we
choose R ¼ L, that is, the distance from the north to the
south pole. Note that by (15) we have 4!L2 ) A, showing
that L ‘‘qualies’’ as a radius according to the point of view
of [15].

2. Compactness of the family of stable rotating horizons

A remarkable consequence of the results presented in
the previous section is that, in appropriate coordinate
systems, the space of stable axisymmetric black holes of
area A and angular momentum J ! 0 is precompact in the
C0 topology. This is another strong manifestation of the
control that the area and the (nonzero) angular momentum
exert on the whole geometry of stable horizons.

The axisymmetric metric of a horizon can be written in
the form

h ¼ dl2 þ )ðlÞd’2;

where l varies in ½0; L+, ’ in ½0; 2!+ and ) is as before.
Instead of the coordinate l we take x ¼ l=L. Then h ¼
L2dx2 þ )ðxÞd’2 and )ðxÞ: ½0; 1+ ! R with )ðxÞ ¼ 0 iff

x ¼ 0 or x ¼ 1. The compactness of the metrics of stable
holes is expressed then as follows.
Theorem 6. Let fHig be a sequence of stable rotating

horizons having constant area A and angular momentum
J ! 0 and having metrics

hi ¼ L2
i dx

2 þ )iðxÞd’2:

Then, there is a subsequence for which the metrics
converge in C0 to a limit metric,

$h ¼ $L2dx2 þ $)ðxÞd’2:

The theorem can be proved easily and directly from the
proposition below. Note that the proposition also shows
that the subsequence can be chosen in such a way that a
limit for the rotational potential !i can also be extracted.
Note too that it uses the coordinate " rather than x. To
prove Theorem 6 one must change the coordinates from
" to x. The coordinates ð"; ’Þ, where the metrics are
expressed in the form hi ¼ ðA=4!Þe!(id"þ )i"d’

2,
are not appropriate because the sequence of coefficients
e!(ið"Þ converges weakly but not necessarily in C0 near the
poles. The coordinates ðx; ’Þ reabsorb this problematic
coefficient.
Proposition 2. Let ð!ið"Þ;)ið"ÞÞ be the data of a

sequence of stable horizons fHig of area A and angular
momentum J ! 0. Then, there is a subsequence converg-
ing in C0 to a datum ð $!ð"Þ; $)ð"ÞÞ.
Proof. By Ascoli-Arzelà it is enough to show that

the sequences f!ig and f)ig are uniformly bounded
[i.e., j!ij ( cðA; JÞ and j)ij ( cðA; JÞ] and equicontinu-
ous (i.e., for all *> 0 there is $> 0 such that for any "1, "2
with j"2 ! "1j ( $ we have j!ið"2Þ !!ið"1Þj ( * and
j)ið"2Þ ! )ið"1Þj ( *). By Theorem 4, the sequences
f!ig and f(ig are uniformly bounded, as is the sequence
f)i ¼ e(isin 2"g. We assume then that j!ij ( cðA; JÞ,
j(ij ( cðA; JÞ and j)ij ( cðA; JÞ.
We prove next that the sequences are equicontinuous.

Observe that if a sequence of functions ffig satisfiesR
!
0 ðf0iÞ2d" ( c, then it is equicontinuous as then wewould

have jfið"2Þ ! fið"1Þj ( c1=2j"2 ! "1j1=2. We will show
next that the sequences ffi ¼ !ig and ffi ¼ )ig have this
property. This will finish the proof. The bound A )
eðMð!i;)iÞ!8Þ=8, the bound j(ij ( cðA; JÞ, and the definition
of M from (8) imply

Z !

0

!02
i

)2
i

sin 2"d" ( c1ðA; JÞ and

Z !

0
(02

i sin"d" ( c2ðA; JÞ

for certain c1ðA; JÞ and c2ðA; JÞ. Then, using j(ij ( c, we
compute
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Z !

0
!2

i d" ( e2c
Z !

0

!2
i

e2csin 3"
d" ( e2c

Z !

0

!02
i

)2
i

sin"d"

( c1e
2c:

On the other hand, the following computation proves thatR
!
0 )02

i d" ( c3ðA; JÞ:
Z !

0
)2
i d" ¼

Z !

0
ð(0

ie
( sin "! e(i cos "Þ2d"

( 2
Z !

0
ð(2

i e
2(isin 2"þ e2(icos 2"Þd"

( 2e2c
Z !

0
(2

i sin"d"þ 2!e2c

( 2e2cc2 þ 2!e2c :¼ c3ðA; JÞ: j

Observe that as j(ij ( c then for any " ! 0;! we have
e!csin 2" ( )ið"Þ ( ecsin 2" and therefore $)ð"Þ ! 0.

II. PROOFS OF THE MAIN RESULTS

The proof of the results does not follow the order in
which they were stated. The order of proof is the following.
First we prove Theorem 5 and then Theorem 3. After
that we prove the bound (19) in Theorem 2 which is
necessary to prove Theorem 4. Finally we give the proofs
of Theorems 1 and 2. Several auxiliary lemmas and prop-
ositions are proved in between the main results.

Before we start let us note that when the space-time
metric is scaled by +2 the following scalings take place:

( ! (þ ln+; ! ! +2!; A ! +2A;

jJj ! +2jJj; R ! +R; L ! +L;

r ! +r; l ! +l; a ! +2a:

One can easily see from these scalings that the statements
to be proved are scale invariant. For this reason very
often we will assume jJj ¼ 1=4 which is a scale that
simplifies considerably the calculations. The assumption
will be recalled when used.

A. Proof of Theorem 5

For the proof of Theorem 5 we will use the following
lemma.

Lemma 1. Let ð!;)Þ be any data with (ð0Þ ¼ (ð!Þ
and !!ð0Þ ¼ !ð!Þ ¼ 1. For any two angles 0< "1 (
"2 < ! make ð!1;)1Þ ¼ ð!ð"1Þ;)ð"1ÞÞ ¼ q1, ð!2;)2Þ ¼
ð!ð"2Þ;)ð"2ÞÞ ¼ q2 and

d12 ¼ dH2ðq1; q2Þ and %12 :¼
d12

2 ln ½tan"2=2tan "1=2
+
: (37)

Then we have

eðM!8Þ=4 )
"ð!1 þ 1Þ2 þ )2

1

4)1

#

%
"ð!2 ! 1Þ2 þ )2

2

4)2

#
ed12ed12ð%12!1Þ2=2%12 : (38)

Proof of Lemma 1. Given any data ð $!; $(Þð"Þ defined
over an interval ½ $"1; $"2+ let’s introduce the convenient
notation

M
$"2
$"1
ð $!; $)Þ ¼

Z $"2

$"1

"
$(02 þ 4 $(þ $!02

$)2

#
sin "d";

where $) ¼ e $( sin ". This expression can be conveniently
written [13],

M
$"2
$"1
ð $!; $)Þ ¼

Z $"2

$"1

"
$)02 þ $!02

$)2

#
sin "d"

! 4
"
ð $(ð"Þ þ 1Þ cos "þ ln tan

"

2

#((((((((
$"2

$"1

; (39)

and observe that by making the change of variable
t ¼ ln tan"=2, we get

Z $"2

$"1

"
$)02 þ $!02

$)2

#
sin "d" ¼

Z $t2

$t1

"
$)02 þ $!02

$)2

#
dt; (40)

where the derivative inside the integral is with respect
to t. We note too that the right hand side is the energy of
the path ð $!; $)Þ on the hyperbolic plane. For this reason,
the formulas (39) and (40) show that the minimum of
M"2

"1
ð $!; $)Þ among all the paths fð $!; $(Þg defined over

½"1; "2+ and with boundary values ð!1;(1Þ and ð!2;(2Þ,
is reached at the only geodesic in the hyperbolic plane
joining ð!1;)1Þ to ð!2;)2Þ. More precisely if ,ðsÞ ¼
ð $!ðsÞ; $)ðsÞÞ is the geodesic parametrized by arc-length s
starting at ð!1;)1Þ (when s ¼ 0) and ending at ð $!2; $)2Þ
(when s ¼ d12), then the minimizing path is

ð $!; $)ÞðtÞ ¼ ,
"
d12ðt! t1Þ
t2 ! t1

#
¼ ,ð2%12ðt! t1ÞÞ:

Note that because of this we have ð $!02 þ $)02Þ= $)2 ¼ 4%12.
In this way if we denote the minimum by M"2

"1
then from

(39) and (40) we have

M"2
"1

¼ 4
"
ð%2

12 ! 1Þ ln tan"
2
! ð(ð"Þ þ 1Þ cos "

#((((((((
"2

"1

:

On the other hand the minimum of M"2
1 among all

path ð $!; $)Þ defined over ½0; "1+ with boundary values
ð!1; 0Þ at " ¼ 0 and ð!1;)1Þ at "1, is reached at the unique
geodesic inH2 ‘‘from’’ ð!1; 0Þ to ð!1;)1Þ. This requires a
bit more effort than the previous case, because strictly
speaking ð!1; 0Þ ‘‘lies’’ at infinity in the hyperbolic plane.
Nevertheless, a proof can be given exactly as in [17] or [18]
and won’t be repeated here. Being more concrete if ,ðsÞ is
such geodesic parametrized by arc-length s then the mini-
mum is reached at
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ð $!; $)ÞðtÞ ¼ ,ðt! t1Þ:

In this way if we denote the minimum by M"1
0 , then from

(39) and (40) we have

M"1
0 ¼ !4ð(ð"Þ þ 1Þ cos "j"10 :

The value of (ð0Þ is calculated from the explicit form of
the geodesic , mentioned before. The explicit form of the
geodesic is

!ðsÞ ¼ ABe2s

B2e2s þ 1
! 1; )ðsÞ ¼ Aes

B2e2s þ 1
;

where

A ¼ ð!1 þ 1Þ2 þ )2
1

)1
; and B ¼ !1 þ 1

)0
:

If we make s ¼ ln tan "=2 and recall that ) ¼ e(sin 2", we
obtain the following expression for (ð0Þ

e(ð0Þ ¼ ð!1 þ 1Þ2 þ )2
1

4)1

1

tan 2 "1
2

:

One can proceed in the same way to find the minimum
M!

"2
among all paths ð $!; $)Þ defined over ½"2;!+ with

boundary values ð!2;(2Þ at "2 and ð1; 0Þ at " ¼ !. The
result is

M !
"2

¼ !4ð(ð"Þ ! 1Þ cos "j!"2 ;

where

e(ð!Þ ¼ )2
2 þ ð!2 ! 1Þ2

4)2
tan 2 "2

2
:

Substituting all the lower bounds obtained so far in the rhs
of the inequality,

M ¼ M"1
0 þM"2

"1
þM!

"2
) M"1

0 þM"2
"1
þM!

"2
;

and manipulating the expression we get

eðM!8Þ=4 )
&
tan %2

12!1"2=2

tan %2
12!1"1=2

'
eð(ð0Þþ(ð!ÞÞ

¼
"ð!1 þ 1Þ2 þ )2

1

4)1

#

%
"
)2
2 þ ð!2 ! 1Þ2

4)2

#
ed12ð%

2
12þ1Þ=2%12

¼
"ð!1 þ 1Þ2 þ )2

1

4)1

#

%
"
)2
2 þ ð!2 ! 1Þ2

4)2

#
ed12ed12ð%12!1Þ2=2%12 ; (41)

which is the desired inequality. j
Proof of Theorem 5. The statement of Theorem 5 is scale

invariant, so it is enough to prove it when jJj ¼ 1=4.

(i) In (38) choose "1 ¼ "2 ¼ " (and thus d12 ¼ 0) and
use the notation ð!;)Þ :¼ ð!;)Þð"Þ to obtain

eðM!8Þ=4 ) ðð!þ 1Þ2 þ )2Þðð!! 1Þ2 þ )2Þ
16)2 :

(42)

Then manipulate the rhs to obtain

ðð!þ 1Þ2 þ )2Þðð!! 1Þ2 þ )2Þ
16)2

¼ ðx2 þ 2!þ 1Þðx2 ! 2!þ 1Þ
16)2

¼ ðx2 þ 1Þ2 ! 4!2

16)2

¼ ðx2 ! 1Þ2 þ 4)2

16)2

¼ ð!2 þ )2 ! 1Þ2
16)2 þ 1

4
: (43)

We can use this information in the inequality
A ) 4!eðM!8Þ=8 to arrive at

A ) 4!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð!2 þ )2 ! 1Þ2

16)2 þ 1

4

s
;

which is (27) (recall jJj ¼ 1=4).
(ii) We move now to prove inequality (28). Denote

q̂1 :¼ ð!̂1; )̂1Þ :¼
ð!1;)1Þ

x1
;

q̂2 ¼ ð!̂2; )̂2Þ :¼
ð!2;)2Þ

x2
; and

d1̂ 2̂ ¼ dH2ðq̂1; q̂2Þ;

where x1 :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

1 þ )2
1

q
and x2 :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

2 þ )2
2

q
. Of

course the points q̂1 and q̂2 lie in the unit semicircle
in the half-plane fð!;)Þ;)> 0g. We start by show-
ing that

d12 ) d1̂ 2̂ ! 2Archð1þ $2Þ: (44)

To obtain this inequality, it is enough to prove

diî ( Archð1þ $2Þ; for i ¼ 1; 2;

ðhere diî ¼ dH2ðqi; q̂iÞÞ (45)

and then use the triangle inequality d1̂ 2̂ (
d1̂1 þ d12 þ d22̂. To prove (45), recall first that the
formula for the hyperbolic distance is

diî ¼ Arch

2
66641þ ð!i ! !̂iÞ2 þ ð)i ! )̂iÞ2

2)i)̂i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðIÞ

3
7775:
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Then use )i ¼ xi)̂i and !i ¼ xi!̂i to estimate the
underbraced term (I) as

ð!i ! !̂iÞ2 þ ð)i ! )̂iÞ2
2)i)̂i

¼ ðxi ! 1Þ2
2xi

)2
i þ!2

i

)2
i

¼ ðxi ! 1Þ2xi
2)2

i

¼ xi
2ð1þ xiÞ2

ð)2
i þ!2

i ! 1Þ
)2
i

( xi
2ð1þ xiÞ2

$2 ( $2;

as wished [to get the first inequality (( ) we have
used (27)].

Let us see in the sequel how to show (28) from Eq. (44)
that we have just proved. Insert (44) in the factor ed12 of
(38) to obtain

"
A

4!

#
2
e2Archð1þ$2Þ

)
"ð!1 þ 1Þ2 þ )2

1

4)1

#"ð!2 ! 1Þ2 þ )2
2

4)2

#
ed1̂ 2̂

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðIIÞ

e
d12ð%12!1Þ2

2%12 :

(46)

We then show that the underbraced factor (II) can be
estimated from below by 1=4 (i.e., ðIIÞ ) 1=4). To see
this note that for points in the unit circle the following
formula for the hyperbolic distance holds

ed1̂ 2̂ ¼ )̂1)̂2

ð!̂1 þ 1Þð!!̂2 þ 1Þ (47)

and that with it we can compute

"ð!1 þ 1Þ2 þ )2
1

4)1

#"ð!2 ! 1Þ2 þ )2
2

4)2

#
ed1̂ 2̂

¼ ððx21 þ 1Þ=x1 þ 2!̂1Þððx22 þ 1Þ=x2 ! 2!̂2Þ
16)̂1)̂2

ed1̂ 2̂

¼ ððx1 ! 1Þ2=x1 þ 2ð!̂1 þ 1ÞÞððx2 ! 1Þ2=x2 þ 2ð!!̂2 þ 1ÞÞ
16ð!̂1 þ 1Þð!!̂2 þ 1Þ

¼ 1

4

" ðx1 ! 1Þ2
2x1ð!̂1 þ 1Þ þ 1

#" ðx2 ! 1Þ2
2x2ð1! !̂2Þ

þ 1
#
) 1

4
;

where in the second equality we have used (47) and where
the last inequality follows from the fact that because q̂1
and q̂2 are in the unit semicircle, then 1þ !̂1 > 0 and
1! !̂2 > 0. Finally, using the bound (II) ) 1=4 in (46),
we obtain

d12
ð%12 ! 1Þ2

2%12
( 2Archð1þ $2Þ þ 2 ln

A

2!
:

Equation (28) follows then from using the following:
(i) the definition of %12 in (37), (ii) that 1þ $2=4 ¼
ðA=2!Þ2, and (iii) that for any y > 0 we have
Archð1þ 4yÞ ) Archð1þ yÞ ) ln ð1þ yÞ. j

B. Proof of Theorem 3

Proof of Theorem 3. Let % ¼ %ðlÞ be the linear function
in l 2 ½l1; l2+ that is one at l1 and zero at l2 (see the graph
(a) in Fig. 5 between l1 and l2). Denote by "12 the region
enclosed by the orbits C1 and C2 at l ¼ l1 and l ¼ l2,
respectively. Let a12 ¼ a2 ! a1 be the area of "12 and
let l12 ¼ l2 ! l1. We claim that

Z
"12

ðjr%j2 þ &%2ÞdA ¼ 2
r1
l12

þ r01 !
a12
l212

; (48)

where r01 ¼ ðdr=dlÞjl¼l1 . To see this use that jr%j2 ¼
ð%0Þ2 ¼ 1=l212 and that & ¼ !r00=r (where 00000 ¼ d=dl)
and integrate twice by parts the term

R
"12

!%00%dA. An
important consequence of (48) is the following. If one
takes the trial function % ¼ %ðlÞ equal to one in ½0; l1+,
zero in ½l2; L+ and linear in ½l1; l2+ (see graph (a) in Fig. 5)
then

Z
H
ðjr%j2 þ &%2ÞdA ¼ 2!þ 2

r1
l12

! a12
l212

:

Any stable horizon has the lhs (and therefore the rhs) of the
previous equation non-negative. Therefore, choosing in it
l1 ¼ 0 (therefore, r1 ¼ 0), we obtain that for any stable
horizon we must have 2!l22 ) a2 for all l2, which is the left
inequality in (20).
Now, if we take a trial function % ¼ %ðlÞ, equal to one at

l1 with l1 ( L=2 and linear on every one of the intervals
½0; l1+, ½l1; L+ [see Fig. 5, graph (b)], then using (48) over
½0; l1+ and over ½l1; L+ and summing up, one obtains

2r1

"
1

l1
þ 1

L! l1

#
) a1

l21
þ A! a1

ðL! l1Þ2
:

Therefore, as l1 ( L=2 we get
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4
r1
l1

) A

L2 : (49)

But as r1 ¼ da=dljl¼l1 , we obtain 4a0 ) ðA=L2Þl (we are
making l1 ¼ l). Integrating we obtain l2 ( ð8L2=AÞa as
long as l ( L=2. If l ) L=2 then aðlÞ ) aðl=2Þ )
ðA=ð32L2ÞÞl2 which is the right-hand side of (20). We
have proved then (20). Formula (21) is exactly (49).

Finally we need to prove (22). We first show that ifH is a
stable horizon, then for any " ( !=3, we have (ð"Þ (
cþ 4, where A ¼ 4!ec. To see this, let 0 ( "1 < "2 (
!=3. Using these angles, define a trial function % as

% ¼

8
>>><
>>>:

e!(ð"1Þ=2 if " 2 ½0; "1+;
e!(ð"Þ=2 if " 2 ½"1; "2+;
e!(ð"2Þ=2 if " 2 ½"2;!+:

With this choice of % we have

Z
H
ðjr%j2 þ &%2ÞdA

¼ 2!e!c

&
ec!(1 þ ec!(2 ! ð(2 ! cÞ cos "2

þ ð(1 ! cÞ cos"1 !
Z "2

"1

"
(02

4
þ ð(! cÞ

#
sin"d"

'
:

(50)

The calculation is straightforward and is explained at the
end of the proof. Thus, if H is stable, the lhs of (50) is non-
negative and we must have

ec!(1 þ ec!(2

) ð(2 ! cÞ cos "2 ! ð(1 ! cÞ cos"1

þ
Z "2

"1

ð(! cÞ sin"d" (51)

for any 0 ( "1 < "2 ( !. Suppose now that there is " 2
ð0;!=3+ such that (ð"Þ ) cþ 4. Let "2 be the first angle
after the angle zero for which( is equal to cþ 4. If for any
" on ½0; "2+ we have (ð"Þ ) c then, choosing "1 ¼ 0 in
(50), we must have

1þ e!4 ) 4 cos "2 ) 2; (52)

which is not possible. If there is " in ½0; "2+ for which
(ð"Þ ( c, let "1 be the first angle before "2 for which ( is
equal to c. With these choices of "1 and "2 in (51), we
obtain again the inequality (52), which is not possible.
To deduce from this (22), we note that

sin 2" ¼ 4
að"ÞðA! að"ÞÞ

A2 ( 4
að"Þ
A

:

Therefore, if " ( !=3 we obtain

r2ð"Þ ¼ ð2!Þ2e(ð"Þsin 2" ( !ð4!ecÞe4sin 2" ( 4!e4að"Þ

from which (20) follows.
It remains to explain how to perform the calculation

(50). We do that in what follows. Denote by "1,
"12, and "2, the regions on H corresponding to the "
intervals ½0; "1+, ½"1;"2+, and ½"2;!+, respectively. For the
integration in "1, where %2 ¼ e!(1 use Gauss-Bonnet,R
"1

&dA ¼ 2!! dr=dljl1 , and that

dr

dl

((((((((l¼l1

¼ 2!! 2!e!cþ(1

"
(0

1

2
sin "þ cos"

#
;

where (0
1 ¼ d(=d"j"¼"1 . We then obtain

Z
"1

&%2dA ¼ 2!e!c

"
ec!(1 ! cos"1 !

(0
1

2
sin "

#
: (53)

Similarly, we have

Z
"2

&%2dA ¼ 2!e!c

"
ec!(2 þ cos"2 þ

(0
2

2
sin "2

#
: (54)

For the integration on "12, use the expression &¼
e!2cþ(ð!2(0cos"!sin"(02þ2sin"!ðsin"(0Þ0Þ=ð2sin"Þ
and that %2 ¼ e!( to obtain (after integrations by parts)

1

1

1

l

l

l1

1 l

l

l

0

0

0

2

2

L

L

L

(c)

(b)

(a)

FIG. 5. Three different choices of the function % in the stabil-
ity condition.
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Z
"12

&%2dA

¼ !2!e!c
Z "2

"1

(02

2
sin "d"þ 2!e!cðcos"1 ! cos"2Þ

þ 2!e!c

"
(0

1

2
sin "1 !

(0
2

2
sin "2

#

þ 2!e!c

"
ð(1 ! cÞ cos "1 ! ð(2 ! cÞ cos"2

!
Z "2

"1

ð(! cÞ sin "d"
#
: (55)

Finally, add up (53)–(55) to deduce (50). j

C. Proof of the bound (19) in Theorem 2

The proof that there isDð$Þ such thatD ) Dð$Þ follows
directly from the next two lemmas whose proofs are given
immediately after their statements.

Lemma 2. Let H be a stable axisymmetric horizon with
4jJj ¼ 1. Let "12 be the region on H bounded by two
orbits C1 and C2. Let l12 ¼ l2 ! l1 and a12 ¼ a2 ! a1 be
the distance and the area between them, respectively. Then,
either L ( 5l12 or L ( 4l12ðA=a12Þ4. Therefore,

D ¼ A

L2 )
2!

ðmax f5l12; 4l12ðA=a12Þ4gÞ2
:

Lemma 3. Let H be a stable axisymmetric horizon with
4jJj ¼ 1 and area A. Then there are orbits C1 and C2 for
which (following the notation of Lemma 2),

a12 ) ~aðAÞ> 0; (56)

l12 ( ~lðAÞ<1 (57)

for certain functions ~aðAÞ and ~lðAÞ.
From these two lemmas, the claim (19) of Theorem 2 is

now direct. We state it as a corollary.
Corollary 1. Let H be a stable axisymmetic horizon of

area A and J ! 0. Then, there is Dð$Þ> 0 such that

Dð$Þ ( D ¼ A

L2 :

Proof of Lemma 2. If L ( 5l12, there is nothing to prove.
Assume then that L > 5l12 and assume without loss of
generality that the middle point between l1 and l2 (that is
ðl1 þ l2Þ=2) lies in the interval ½0; L=2+ (that is L=2 )
ðl1 þ l2Þ=2). These two facts imply directly that

L! l1 ) L=2 and L! l1 ) 3l12;

and from them we get

Lþ l1
2

( L

2
þ l1 ( L and

Lþ l1
2

! l2 )
l1
2
þ 3

l2 ! l1
2

) l2 ! l1
2

:

Therefore the interval ½l2; ðLþ l1Þ=2+ lies inside ½0; L+ and
has a length greater than or equal to l12=2. Now, for every
$l 2 ½l2; ðLþ l1Þ=2+ consider the trial function %$l ¼ %$lðlÞ

%$lðlÞ ¼

8
>>>><
>>>>:

0 if l ( l1 or l ) $lþ ð$l! l1Þ ¼ 2$l! l1;

1 if l ¼ $l;

linear when l1 ( l ( $l;

linear when $l ( l ( 2$l! l1

(58)

described in Fig. 5, graph (c). We use this trial function
now and with the help of (48) (used twice, over ½l1; $l+ and
over ½$l; 2$l! l1+), we obtain easily

Z
H
ðjr%$lj2 þ &%2

$l
ÞdA

¼ 4
rð$lÞ
$l! l1

! að$lÞ ! aðl1Þ
ð$l! l1Þ2

! að2$l! l1Þ ! að$lÞ
ð$l! l1Þ2

:

In particular, if H is stable then the rhs is non-negative and
we have

4rð$lÞ ) að$lÞ ! aðl1Þ
$l! l1

:

But rð$lÞ ¼ dað$lÞ=d$l :¼ a0ð$lÞ and therefore 4a0ð$lÞ=ðað$lÞ !
aðl1ÞÞ ) 1=ð$l! l1Þ. Integrating this inequality for $l
between l2 and ðLþ l1Þ=2, we obtain

"
aððLþ l1Þ=2Þ ! aðl1Þ

aðl2Þ ! aðl1Þ

#
4
) ðL! l1Þ=2

l2 ! l1
:

As $aððL! l1Þ=2Þ ( A and ðL! l1Þ=2 ) L=4, we deduce

4l12

"
A

a12

#
4
) L

as wished. j
Proof of Lemma 3. In this proof we are assuming that

jJj ¼ 1=4. Take into account therefore that as ðA=2!Þ2 ¼
1þ $2=4 any function of A can be thought as a function of
$ and vice-versa.
To start, recall that the graph of the data ð!;)Þ inside

the half plane fð!;)Þ=)> 0g lies between two arcs of
circles passing through ð!1; 0Þ and (1,0) but cutting the

half-line f)> 0g at the points ð$þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
$2 þ 4

p
Þ=2 and

ð!$þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
$2 þ 4

p
ÞÞ=2, respectively, (see Fig. 6). Observe

too that ð!$þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
$2 þ 1

p
ÞÞ=2> 1=ð1þ $Þ. Therefore for

any ~)< 1=ð1þ $Þ and angle " such that )ð"Þ ¼ ~) we
have either !ð"Þ< 0 or !ð"Þ> 0. For any ~)< 1=ð1þ $Þ
define the angles "1 ¼ "1ð~)Þ and "2 ¼ "2ð~)Þ by

"1 ¼ max f"=)ð"Þ ¼ ~) and !ð"Þ< 0g and

"2 ¼ min f"> "1=)ð"Þ ¼ ~) and !ð"Þ> 0g:

With this definition of "1 and "2, we clearly have
(c0) 0< "1 < "2 < !, and
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(c1) )ð"1Þ ¼ )ð"2Þ ¼ ~), and
(c2) )ð"Þ ) ~) when " 2 ½"1;"2+, and
(c3) !1 ¼ !ð"1Þ< 0 and !2 ¼ !ð"2Þ> 0.

Because of (c3) there is "m 2 ð"1; "2Þ such that !ð"mÞ ¼
0. Observe that at "m, we have

)ð"mÞ>
!$þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
$2 þ 4

p

2
>

1

1þ $
: (59)

Recall now from the discussion after Theorem 3 that when
" 2 ½0;!=3+ [ ½2!=3;!+, we have

)ð"Þ ¼ e(ð"Þsin 2" ( Ae4sin 2":

From this fact and (59), we deduce that either "m 2
ð!=3; 2!=3Þ or

1

1þ $
< )ð"mÞ ( Ae4sin 2"m:

It follows then that there is ,ð$Þ ¼ ,ðAÞ 2 ð0;!=2Þ inde-
pendent of ~)ð<1=ð1þ $Þ such that "m 2 ½,ðAÞ;!!
,ðAÞ+. We will use this information below.

In the following, denote by d12 the hyperbolic distance
between ð!1;)1Þ ¼ ð!1; ~)Þ and ð!2;)2Þ ¼ ð!2; ~)Þ. We
will use also %12 as in (37). The proof of the Lemma will
come from using the inequalities

d12 ) Arch
1

ð1þ $Þ2 ~)2 ; (60)

ð%12 ! 1Þ2
%12

( 3
Archð1þ $2Þ

d12
; (61)

"
min

$
tan

"1
2
; tan

!! "2
2

%#
2
( e!d12=2%12 ; (62)

which are deduced as follows. The inequality (60) follows
from

d12 ¼ Arch
&
1þ ð!2 !!1Þ2

2~)2

'
(63)

and by noting that

ð!2 !!1Þ2 ) !2
1 þ!2

2 ) 2
"

1

ð1þ $Þ2 ! ~)2

#
;

where for the first inequality we use the conditions!1 < 0,
!2 > 0, and for the second we use that for i ¼ 1, 2, we
have !2

i þ ~)2 ) 1=ð1þ $Þ2 (the graph of ð!;)Þ, which
lies outside the disc of center (0,0) and radius 1=ð1þ $Þ).
The inequality (61) is precisely (28) and finally the in-
equality (62) follows from (37) and after noting that,
tan ð"2=2Þ ¼ 1= tan ðð!! "2Þ=2Þ.
Now, from (60)–(62), we deduce directly the limits

lim
~)!0

d12 ¼ 1; lim
~)!0

%12 ¼ 1; and

lim
~)!0

min
$
tan

"1
2
; tan

!! "2
2

%
¼ 0:

Therefore, one can chose ~) ¼ ~)ðAÞ such that

min
$
tan

"1
2
; tan

!! "2
2

%
( tan

,ðAÞ
4

:

Hence, either "1 ( ,ðAÞ=2 or ! ! "2 ( ,ðAÞ=2.
But "m 2 ½,ðAÞ;!! ,ðAÞ+ and therefore either
½,ðAÞ=2;,ðAÞ+ . ½"1;"2+ or ½!! ,ðAÞ;!! ,ðAÞ=2+ .
½"1; "2+. We use now this crucial fact to show (56) and (57).
If we denote by C1 and C2 the axisymmmetric orbits at

"1 and "2, respectively, then the area a12 between them is
greater than or equal to the area contained either between
the orbits with angles ,ðAÞ=2 and ,ðAÞ, or between the
orbits with angles !! ,ðAÞ and !! ,ðAÞ=2. In either
case such area is ~aðAÞ :¼ Aðcos,ðAÞ=2! cos,ðAÞÞ=2.
Thus, with this definition of ~aðAÞ, we have a12 ) ~aðAÞ
which is (56).
On the other hand, the length l12 between C1 and C2 can

be estimated from above by

l12 ¼
ffiffiffiffiffiffiffi
A

4!

s Z "2

"1

e!(ð"Þ=2d"

¼
ffiffiffiffiffiffiffi
A

4!

s Z "2

"1

sin "
ffiffiffiffiffiffiffiffiffiffi
)ð"Þ

p d" ( 2ffiffiffiffi
~)

p
ffiffiffiffiffiffiffi
A

4!

s
:¼ ~lðAÞ;

where we have used ) ¼ e(sin 2", and because of (c2),
between "1 and "2 we have ) ) ~). With this definition of
~lðAÞ, we have l12 ( ~lðAÞ which is (57). j

D. Proof of Theorem 4

Proof of Theorem 4. Again, the statement of Theorem 4
is scale invariant, and therefore we can assumewithout loss
of generality that jJj ¼ 1=4. Take into account below that
ðA=2!Þ2 ¼ 1þ $2=4 and therefore that any function of A
can be thought as a function of $ and vice versa.
(1) We need to show that there are functions F1ð$Þ and

F2ð$Þ, such that for any stable axisymmetric horizon
with data ð!;)Þ, we have j(! (Ej ( F1ð$Þ and
j!!!Ej ( F2ð$Þ. We prove first the latter bound
and then the former.

θ θ

θ

η∼

1−1

m

1 2

η

ω

At

At At

FIG. 6. The angles "1, "m, and "2.
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The bound j!!!Ej ( F2ð$Þ: We know that the
graph of ð!;)Þ lies inside the region enclosed by the
segment ½!1; 1+ on the! axis and the arc of a circle
of center ð0;$=2Þ, which starts at ð!1; 0Þ and ends at
(1,0) (see Fig. 4). The radius of such circle isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ $2=4

p
. Therefore j!j (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ $2=4

p
, which

gives the bound j!!!Ej (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ $2=4

p
þ 1 :¼

F2ð$Þ (because j!Ej is obviously bounded by one
[recall 4jJj ¼ 1)].
The bound j(! (Ej ( F1ð$Þ: This bound will fol-
low as the result of the two items below. Let "̂ 2
½0;!=2+ such that ð1! cos "̂Þ=2 ¼ 1=128. In the
first item, we prove that j(ð"Þ ! (Eð"Þj ( G1ð$Þ
for certain function G1ð$Þ and as long as " 2
ð½0; "̂+ [ ½!! "̂;!+Þ. In the second item, we instead
show that j(ð"Þ ! (Eð"Þj ( G2ð$Þ for certain func-
tion G2ð$Þ and as long as " 2 ½"̂;!! "̂+. Thus,
after the two items, we will have proved that
j(ð"Þ ! (Eð"Þj ( max fG1ð$Þ; G2ð$Þg :¼ F1ð$Þ
for any " 2 ½0;!+ as wished.

(i) By (ii) in Theorem 3 we have

$c 1D
2ð$Þa ( r2 ( $c2a

for constants $c1, $c2 and as long as a=A¼ð1!cos"Þ=
2(1=128. Recalling that r2¼4!e(sin2" and that
(E ¼ ln ½1=ð1þ cos 2"Þ+, we get

$$c1D
2ð$ÞAð1! cos"Þð1þ cos 2"Þ

sin 2"

( e(!(E (
$$c2Að1! cos "Þð1þ cos 2"Þ

sin 2"

for constants $$c1 and $$c2. It follows that j(ð"Þ !
(Eð"Þj ( G1ð$Þ for certain function G1ð$Þ and as
long as " 2 ½0; "̂+. By symmetry the similar result
applies for " 2 ½!! "̂;!+.

(ii) To simplify the notation below we make
ð!ð"Þ;)ð"ÞÞ ¼ ð!;)Þ, ð!ð"̂Þ;)ð"̂ÞÞ ¼ ð!̂; )̂Þ, ( ¼
(ð"Þ and (̂ ¼ (ð"̂Þ. To start we observe that
dðð!;)Þ; ð!̂; )̂ÞÞ ) 2j(! (̂j which is the result
of the following computation:

dðð!;)Þ; ð!̂; )̂ÞÞÞ

¼ Arch
&
1þ ð!! !̂Þ2 þ ð)! )̂Þ2

2))̂

'

) Arch
&
1þ ð)! )̂Þ2

2))̂

'

¼ Arch
&ð)=)̂Þ2 þ ð)̂=)Þ2

2

'

¼ Arch½cosh 2ð(! (̂Þ+ ¼ 2j(! (̂j:

Wewill make use now of (28) with "1 ¼ " and "2 ¼
"̂, namely,

&
dðð!;)Þ; ð!̂; )̂ÞÞ ! ln

tan "̂=2

tan"=2

'
2

( 4
"
ln
tan "̂=2

tan "=2

#
Archð1þ $2Þ:

From this and the inequality dðð!;)Þ; ð!̂; )̂ÞÞ )
2j(! (̂j observed before, we get

2j(! (̂j ( ln
tan "̂=2

tan"=2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
"
ln
tan "̂=2

tan "=2

#
Archð1þ $2Þ

s
:

Thus, there is G3ð$Þ such that for any "2½"̂;!!"̂+,
we have j(! (̂j ( G3ð$Þ. But j(ð"Þ!(Eð"Þj(
j(ð"Þ!(ð"̂Þjþ j(ð"̂Þ!(Eð"̂Þjþ j(Eð"̂Þ!(Eð"̂Þj
and thus

j(ð"Þ ! (Eð"Þj
( G3ð$Þ þG1ð$Þ þG4ð"̂Þ :¼ G2ð$Þ:

This finishes (i).
(2) We proceed by contradiction and assume that there

is a sequence of data ð!i;)iÞ of a sequence of stable
horizons Hi with jJij ¼ 1=4 and having limAi ¼
2! but not converging to the extreme Kerr horizon
ð!E;)EÞ (with jJj ¼ 1=4). From Proposition 2 and
the discussion after the statement of Theorem 5 we
deduce that there is a subsequence of ð!i;)iÞ con-
verging in C0 to ð $!; $)Þ of the form

$) ¼ 2ðtan 2 "
2Þ=ðtan 2 $"

2Þ
1þ ðtan 4 "

2Þ=ðtan 4 $"
2Þ
;

$! ¼ !1þ ðtan 4 "
2Þ=ðtan 4 $"

2Þ
1þ ðtan 4 "

2Þ=ðtan 4 $"
2Þ

;

(64)

where $" ! !=2. We will still index such subse-
quence with ‘‘i’’. We will show that this implies
that for sufficiently big i, the black hole Hi is not
stable, which is against the assumption. The insta-
bility for i big enough is shown by finding a trial
function, to be denoted as %*i , for which
Sðhi;%*iÞ< 0, where Sðh;%Þ, for a given metric h
and function %, is defined to simplify notation here
and below as

Sðh;%Þ ¼
Z
H
ðjr%j2 þ &%2ÞdA:

We start by noting that the limit metric

$h ¼ 1

2
e! $(d"2 þ e $(sin 2"d’2;

where $( is defined through $) ¼ e $(sin 2" has an angle
defect #N at the north pole N (i.e., at " ¼ 0) equal to
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#N :¼ 2!! dr

dl

((((((((l¼0
¼ 2!

"
1! 1

tan 2 $"=2

#

and an angle defect at the south pole S (i.e., at " ¼ !)
equal to

#S ¼ 2!ð1! tan 2 $"=2Þ:

Thus, if $"< !=2 we have #N < 0 and #S > 0, while if
instead $"> !=2 then we have #N > 0 and #S < 0.
Assume without loss of generality that $"< !=2 and there-
fore that #N < 0. This will be used crucially later.

Denote by $L the $h length of the meridian. Define now a
function %ðlÞ on ð0; $L=2+ by

%ðlÞ ¼ ln ln
&
e $L

2l

'
;

and for any *< $L=2, define %*ðlÞ on ½0;1Þ by

%*ðlÞ ¼

8
><
>:

%ð*Þ when l ( *;

%ðlÞ when * ( l ( $L=2;

0 when l ) $L=2:

For any smooth metric hwith L ) $L=2, we can compute
Sðh;%*Þ in the form

Sðh;%*Þ ¼ 2!ð1!-0ð*ÞÞ%2ð*Þ

þ 2!
Z $L=2

*
ð-%02 !-00%2Þdl; (65)

where - comes from writing h ¼ dl2 þ-2ðlÞd’2, that is
- ¼ ffiffiffiffi

)
p

. Note that the limit metric $h ¼ dl2 þ $-2d’2 is
not smooth at the poles, and therefore the functional value
Sð $h;%*Þ is, a priori, not well defined. Nevertheless as $-ðlÞ
is a smooth function on ½0; $L+, the right-hand side of (65)
also makes perfect sense if we use - ¼ $-.

We prove now the following two fundamental facts:
(F1) If */ð( $L=2Þ is sufficiently small, then

2!ð1! $-0ð*/ÞÞ%2ð*/Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðIÞ

þ 2!
Z $L=2

*/
ð $-%02 ! $-00%2Þdl

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðIIÞ

< 0:

(F2) For any */ð( $L=2Þ, there is a sequence *i ! */

such that

Sðhi;%*iÞ ! 2!ð1! $-0ð*/ÞÞ%2ð*/Þ

þ 2!
Z $L=2

*/
ð $-%02 ! $-00%2Þdl: (66)

From (F1) and (F2), it will follow that for big enough i,
there is *i close to */ [*/ as in (F1)] such that Sðhi;%*iÞ<
0. Thus, we will be done with the proof of Theorem 4 after
proving (F1) and (F2).

Proof of F1. From the limits

lim
*/!0

2!ð1!-0ð*/ÞÞ ¼ #N < 0;

lim
*/!0

%2ð*/Þ ¼
"
ln ln

&
e $L

2*/

'#
2
! þ1;

it is deduced that the underbraced term (I) diverges to
minus infinity as */ tends to zero. Hence, to prove (F1) it
is enough to prove a bound for jðIIÞj independent of */. To
show this we use the following expansion that the reader
can check directly from (64) (recall $- ¼ $)),

$-ðlÞ ¼ 1

tan 2 $"=2
lþ

ffiffiffi
2

p

6tan 3 $"=2
l3 þOðl4Þ:

From it one easily shows that the function $-00%2 is

bounded on ½0; $L+ and therefore that jR $L=2
*/

$-00%2dlj (R $L
0 j-00%2jdl <1. Also, as ð%0Þ2 ¼ 1=ðl ln lÞ2, we have

Z $L=2

*/
%02 $-dl (

Z $L

0
%02 $-dl <1:

This finishes the proof of (F1).
Proof of F2. An easy application of Rolle’s Theorem

shows that, as -i converges in C
0 to $-, there is a sequence

*i ! */ such that -0
ið*iÞ ! $-0ð*/Þ. We use this sequence

*i below. After an integrating by parts we obtain the
following expression for Sðhi;%*iÞ,

Sðhi;%*iÞ ¼ 2!ð1!-0
iÞ%2j*i

þ-0
i%

2j*i ! 2-i%%
0j*i

!
Z $L=2

*i
2-ið%02 þ %%00Þdl

þ 2!
Z $L=2

*i
-i%

02dl;

where we did not write the evaluations at $L=2which vanish
because %ð $L=2Þ ¼ 0. Now as -0

ið*iÞ ! $-0ð*/Þ and -i

converges to $- in C0 we can take the term by term limit
in the previous expression to obtain

2!ð1! $-0Þ%2j*/ þ $-0%2j*/ ! 2 $-%%0j*/

!
Z $L=2

*/
2 $-ð%02 þ %%00Þdlþ 2!

Z $L=2

*/
$-%02dl:

Undoing the integration by parts, we get the right-hand side
of (66), as wished. j

E. Proof of Theorems 1 and 2

Proof of Theorem 1. It is enough to prove the theorem
when jJj ¼ 1=4. Recall that the graph of ð!;)Þ lies be-

tween two arcs cutting the ) axis at the points ð!$þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
$2 þ 4

p
Þ=2 and ð$þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
$2 þ 4

p
Þ=2. It follows that

R ¼ max f2! ffiffiffiffi
)

p g ( 2!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
$þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
$2 þ 4

p

2

s

: (67)
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On the other hand, when the graph of ð!;)Þ crosses the )
axis, we have ) ) ð$þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
$2 þ 4

p
Þ=2 and, therefore,

R ¼ max f2! ffiffiffiffi
)

p g ) 2!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!$þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
$2 þ 4

p

2

s

: (68)

j
Proof of Theorem 2. We assume jJj ¼ 1=4. To

obtain the upper bound in (16), use (67) and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
$þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
$2 þ 4

p

2

s

( ð$2 þ 4Þ1=4 ¼
ffiffiffiffi
A

!

s
:

To obtain the lower bound instead, use (68) and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!$þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
$2 þ 4

p

2

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

$þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
$2 þ 4

p
s

)
ffiffiffiffi
!

A

r
:

The first inequality in (17) is just A ) 8!jJj. The second
is (20) of Theorem 3 when l ¼ L and, therefore, a ¼ A.
The first inequality in (19) is a consequence of the obvious

LR ) A. To obtain the second inequality, use R (
ffiffiffiffiffiffiffiffiffiffi
4!A

p

and
ffiffiffiffi
A

p
(

ffiffiffiffiffiffiffi
2!

p
L, which we have proved before. j
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